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The preconditioned conjugate gradient method is used to solve n-by-n Hermitian
Toeplitz systems A,x = b. The preconditioner 3, is the Strang’s circulant precondi-
tioner which is defined to be the circulant matrix that copies the central diagonals
of A,. The convergence rate of the method depends on the spectrum of S;7'A4,.
Using Jackson’s theorem in approximation theory, we prove that if 4, has a
positive generating fucntion f whose /th derivative /', />0, is Lipschitz of order
0<a<1, then the method converges superlinearly. We show moreover that the
error after 2g conjugate gradient steps decreases like [T7_, (log? k/k™/ ™). T 1992

Academic Press, Inc.

1. INTRODUCTION

An n-by-n matrix 4,=[a;,] is said to be Toeplitz if a, ;= a;_;, i€, 4,
is constant along its diagonals. Toeplitz systems of the form 4, x = b occur
in a variety of applications, especialy in signal processing and control
theory. Existing direct methods for dealing with them include the Levinson—
Trench-Zohar O(n®) algorithms [19] and a variety of O(nlog?n) aigo-
rithms such as the one by Ammar and Gragg [1]. The stability properties
of these direct methods for symmetric positive definite matrices are dis-
cussed in Bunch [27. In this paper, we consider an iterative method, the
preconditioned conjugate gradient method, for solving Toeplitz systems.

An n-by-n Toeplitz matrix B, is said to be circulant if its diagonals b,
satisfy b,_;=b_, for 0 <j<n—1. We remark that circulant matrices can
always be diagonalized by unitary matrices. In fact, we have B,=FXA,F,.
where A, is diagonal and F, is the Fourier matrix with entries given by
[F,]=(l//n)e 2" see Davis [11]. Strang [17] first suggested the
use of the preconditioned conjugate gradient method with circulant matrix
B, as preconditioner for solving positive definite Toeplitz systems. Instead
of solving A,x = b, we solve the preconditioned system B, 'A,x= B, s by
the conjugate gradient method with B, being a circulant matrix.
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The number of operations per iteration in the preconditioned conjugate
gradient method depends mainly on the work of computing the
matrix-vector multiplication B 'A4,y; see for instance Golub and van
Loan [13]. For any vector y, since B, 'y=F*A'F, y, the product B 'y
can be found efficiently by the Fast Fourier Transform in O(#n log n) opera-
tions. Likewise, the product 4, v can also be computed by the Fast Fourier
Transform by first embedding A4, into a 2n-by-2n circulant matrix. The
multiplication thus requires O(2nlog (2n)) operations. It follows that the
total operations per iteration are of order O(n log n). In order to compete
with direct methods, the circulant matrix B, should be chosen so that the
conjugate gradient method converges sufficiently fast when applied to the
preconditioned system B, 'A4,x= B 'b. It is well-known that the method
converges fast if B, ' A, has a clustered spectrum, i.e., B, '4, is of the form
I,+ U,+ W, where I, is the identity matrix, U, is a matrix of low rank,
and W, is a matrix of small /, norm.

Strang in [17] proposed a possible choice of circulant preconditioner S,,.
It is obtained by copying the central diagonals of 4, and reflecting them
around to complete the circulant. Chan and Strang [3] then proved that
if the diagonmals a; of the Toeplitz matrix A4, are Fourier coefficients of a
positive function in the Wiener class, ie. 3 |a;| < co, then the eigenvalues
of the preconditioned system S, ' 4, will be clustered around one for large
n. It follows that the preconditioned conjugate gradient method, when
applied to the preconditioned system, converges superlinearly for large ».
More precisely, for all ¢ >0, there exists a constant ¢(g) >0 such that the
error vector ¢, of the preconditioned conjugate gradient method at the gth
iteration satisfies

legl < c(e)e? {leoll (1)

when n is sufficiently large. Here ||x|°=x*S,'?4,S, "“x. Hence the
number of iterations required for convergence is independent of the size of
the matrix 4, when # is large. In particular, the system A,x=5 can be
solved in O(nlog n) operations.

Over the past few years, several other preconditioners have also been
proposed; see, for instance, T.Chan [9], R. Chan [5, 8], Tyrtyshinkov
{207, Ku and Kuo [16], and Huckle [15]. In R. Chan [4, 5] and Chan,
Jin, and Yeung [6], we have shown respectively that the preconditioners
proposed in [5,9,20] also work for the Wiener class functions; ie., (1)
holds if ¥, |a;| < . Huckle, on the other hand, has proved in [15] that
his preconditioner works for the class of functions with ¥, j [4;]* < 0. We
remark that it is the Besov space BY? For T. Chan’s preconditioner, Chan
and Yeung [7] recently have extended the superlinear convergence results
to the class of 2z-periodic continous functions. One of the aims of this
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paper is to obtain similar results for Strang’s preconditioner. We will prove
that Strang’s preconditioner works for a slightly smaliler class of functions
(see (30)) than T. Chan’s preconditioner does.

In the conjugate gradient method, an estimate of the number of itera-
tions required for convergence can be obtained by studying the precise rate
at which [le, ]| goes to zero in (1). Trefethen [187 first proved that if fis a
positive rational function of type (u, v), then the preconditioned system
S 'A, has at most 1+2 max{y, v} distinct ecigenvalues. Hence the
conjugate gradient method, when applied to the preconditioned system,
converges in at most 1+2max{y, v} steps. He also proved that if f is
positive and amalytic in a neighborhood of |zj=1 and if S, is used as
preconditioner. then there exist constants ¢ >0 and 0 <r < | such that

el <er® lieqll

for » sufficiently large. His proof uses the theory of Carathéodory-Fejér
approximation to approximate the singular values of a Hankel matrix
which is obtained from S '4, by an orthogonal transformation.

In R. Chan [5], we considered functions f that are less smooth. and
using tools in lirear algebra, we proved the following result.

THEOREM 1. Let f be a positive v-times differentiable function with its vii
derivative in L'[0, 2rn], where v> 1. If S, is used as preconditioner for A,,
then for large n,

q

c .
el va—,g leols {2}

for some constant ¢ that depends on f and v orly.

Another aim of this paper is to improve the above result and to extend
it to the class of Lipschitz functions of order v>0. Our main tool is
Jackson’s theorem in polynomiai approximation. We will show that for a
positive function f whose /th derivative f*, />0, is Lipschitz with order
0 <a <!, the error vector e,, is bounded by

oo,
Lad

7 /clog k\?
lesgll < T1 (k—,,—i—, lleoll.
k=2 /

where ¢ is a constant that depends only on f. For v=7/+a>1, {3) can be
rewritten as

q

{ 7 log?k
||eEqH < ,q H g }
C k=

v _ 2 HeOH 4 3
:{

((g—1))~ -
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Since

1
qu

¢ log’k
= [ =<t
k=2

for all g, we see that (3) is a better bound than (2).

This paper is organized as follows. In Section 2, some results in
approximation theory are introduced and the spectra of 4, and S, are
analysed. In Section 3, we find the distribution of the eigenvalues of
A,— S, and show that they are clustered around zero. In Section 4, we
analyse the spectrum of S '4, and use the results to derive the bound (3)
for |e,,|l. Some concluding remarks are given in Section 5.

2. THE SPECTRA OF 4, AND S,

To begin with, let %,, be the Banach space of all 2zn-periodic continuous
real-valued functions defined on the real line R and equipped with the
supremum norm |- Let

o

A2m

1 _
alf) =5 | @O0, k=0, %1, %2,

be the Fourier coefficients of f for fin 4,,. We remark that for all integers
k, a_,=a, as fis real-valued. Let 4,(f) be the n-by-n Hermitian Toeplitz
matrix with the (j, /)th entry given by a;_,(f). The function f'is called the
generating function of the matrices A,(f). The following lemma, proved in
Grenander and Szegd [14], gives the relation between f and the spectrum
a(A,(f)) of A,(f). For simplicity, we let f,;, and f,.,, be the minimum and
maximum values of f. Thus

fmin <f(0) Sfma_vu VGGR

LEMMA 1. Let fe%,,. Then the spectrum o(A,(f)) of A,(f) satisfies
G(An(f))g [fmin,fmax:lv VH?I (4)

In particular, we have

If, moreover, f is a positive function, ie., fo.. >0, then A,(f) is positive
definite for all n.

Given 4,(f), Strang’s preconditioner S, (/) is defined to be the circulant
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matrix that copies the central diagonals of 4,(f) and reflects them around
to complete the circulant. More precisely, the kth entry in the first column
of §,(f) is given by

a,(f) O<k<m,
a,_ A m<k<n.

[S,(/)Tro= {

Here and in the following, we assume for simplicity that n=2m+ 1. If
n=2m, we define [S,(f)],.0=0.

We prove below that the eigenvalues of S,{f) are given by the mth par-
tial sum s,,(f) of f at equally spaced points in {0, 2z]. We recall that the
jth partial sum of 1 is defined as

J
(OO =Y af)e™, Y8eR.
k=—y

LemMa 2. The eigenvalues 4,(S,(f)) of S,(f) are given by

m

2
LSMN= Y alf)e s =s, i) (2 ’”) 0<j<n—1,

k=—m

o
-~
R-—

In particular,

LS, (D <l (O, V2

Proof. Since S,(f) is circulant, its eigenvalues are given in terms of the
entries in the first column,

=1 (8}

=

n—1

= Z [Sn(f)]k,()ezm-jkv"s Og‘]gﬂ— 1,

see Davis [11] for instance. Using (6), this becomes

n—1

LS,UN= Y alNe 4 T a (e

k=0 k=m+1

3

“ , /2N
=3 ak(f)eZ"'f'*’"=sm(fu—Tf’-), o<j<n—1 1§
k= —m

\ 7

Our next aim is to give similar bounds on the spectrum of 5,(f) as in
{4) and (5). We first recall some definitions and theorems in approximation
theory. For all k>0, let

k

: _ |
%E{fe(gzn | f(0)="% pse”, P_,'=PA,-,0<JF<1€E

j=—k



196 CHAN AND YEUNG

be the space of all kth degree real-valued trigonometric polynomials. The
best polynomial approximation of f is measured by

E.(f)= ini: 1f=pill
Pk € P

Since Z, is finite dimensional, it is clear that the infimum can always be
attained by some polynomials in Z,.
For 0<a<1, let

z{fe%"l sup Mez_)l<oo}

[ZE) |01_02|“

be the space of all Lipschitz functions of order a. For all v>0, we write
v=1[+ o where / is a non-negative integer and 0 <o < 1. Then we define

%;n= {fe(€27r l f(l)ez}'

The following two Lemmas relate ||s,.(f)—f |, with E.(f) for functions
in €5,. Their proofs can be found in Cheney [10] and Feinerman and
Newman [12].

LeMMa 3 (Dini-Lipschitz Theorem). For all fe%,,, we have
Isi(f) —flle <(4+10g K)E,(f),  VE=1 )

LemMA 4 (Jackson’s Theorem). For all fe€,, v>0, we have

f)\(k+1) Vk =1, (10)

where ¢ is a constant that depends only on f and v.

As a corollary to the two lemmas above, we give a bound on the
spectrum of S, (f) for positive functions fe €5,, v>0.

THEOREM 2. Let f be a positive function in €, with v>0. Then for large
n, the spectrum of o(S,(f)) of S, (f) satisfies

O-(Sn(f))g[%fmin’ 2fmax]' (11)

In particular, S,(f) is positive definite and

2
ST < —. 12
1S ()2 < i (12)



JACKSON’S THEOREM AND TOEPLITZ SYSTEMS 197

Proof. By (7), the eigenvalues of S,(f) are given by

0<ig<n—1.

-

) 21 27 2nj
A5, (N =51 (%>=(Sm(f)_f) (?) +f< m}

n

Thus if 4,,,,(S,(f)) is the largest eigenvalue of §,{ ), then by (9) and (10},
we have

/{max(Sn(f)) < ”Sm(f)_f” x= +fmax
<(4-+logm)E, (/) + fimax

e
J max>

4 +logm

“mt 1y

where ¢ depends only on f. Since f,. = frin > 0 and
4+logm

m =
”m— G (ﬂ’l+ 1)‘

for v>0, it follows that for »=2m + 1 sufficiently large,

lmax(Sn(f)) S 2fmax'
Similarly, the smallest eigenvalue A,,,(S,(f)) of S,(f) is bounded beiow
by
’lmin(Sn(f)) me'm - ”Sm(f} ~.f” &
me'm - (4 + 10g I‘H)Em(_f>

4 +logm

2 min — €7 v
/ (m+1)

Since £, >0, we have, for n sufficiently large,

/lmin(Sn(f))>%fmin' l

3. THE SPECTRUM OF A4,(f)—S,(f)

In this section we show that for Strang’s preconditioner defined by (6),
the spectrum of 4,(f)— S, (/) will be clustered around zero provided that
fe¥€:, ., v>0. We begin with the following lemma.
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LemMma 5. Let p,e%, for some k<m. Then A,(p,)— S,.(p;) can be
written as

A (pi) = Su(pe) = Ulpi) = V(pw), (13)

where U(p,) and V(p,) are positive semi-definite matrices of rank at most k.

Proof. Since p, is a degree k real trigonometric polynomial and S, (p,)
copies the central diagonals of A4,(p,), it is clear that the (2m+ 1)-by-
(2m + 1) matrix 4,(p,) — S,(ps) is Hermitian and of the form

0 0 B
A,(pe)=S,(p)=| 0 0 0, (14)
B* 0 0

where B is an m-by-m Toeplitz matrix with at most £ nonzero diagonals at
the upper right hand corner. Let PAQ* be the singular value decomposi-
tion of B, see Golub and van Loan [13]. Thus P and Q are m-by-m
unitary matrices and 4 is a nonnegative diagonal matrix with at most &
positive diagonal entries. It is straightforward to check that

P 0 P

1
—l0o /2 o0
‘/EQO—Q

is an n-by-n unitary matrix and

P 0 o* 0 0 B{{P O P 4 0 0
Ho 2 o0 0o 00fo 2 0 =00 o0
P* 0 —Q*ilB* 0 O)JO0 0 -0 0 0 —4
Hence except for a single zero eigenvalue, all eigenvalues of A,(p,)—
S,(p) occur in pairs +4, where each 1 is a singular value of B. |

Thus if fe #,, then 4,(f)—S,(f) has at most 2k nonzero eigenvalues.
For functions fe€%.,,, we have the following lemma.

LEMMA 6. Let fe%,,. Then for all n= 1, we have

A,(f)=SAN)=UN) =V + W (f), 1<k<m,

where U, (f) and V (f) are positive semi-definite matrices of rank at most
k and

Wl <(4+logm)E () +2E(f), 1<k<m (15)
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Proof. For all 1 <k<m, let p, e P, be the best approximation of f in
P, 1L,
1f=pill o = Ex(f). (15}
Clearly
ANV =S () =4,(p) =S p)+ A,(f—p) =S f—p) {17)

By (13), the first two terms in the right hand side of {17) can be written
as

An(pk)“ Sn(pk) = Uk_ Vks

where U, and V. are positive semi-definite matrices of rank at most 4. Tt
remains to find a bound in /, norm for the last two terms in {17). By (5},
we have

1A= <V f =2l o = E(F) (18}
By (8), the triangle inequality, (9), and (16), we have
”Sn(f‘_pl\)HZ< ”sm(f—pk)”ao = Hsm{f)_pk”cc

<@+logm)E, (fY+E(f) {

e
e

Putting (18) and (19) into (17), we get (15). §

Using Cauchy’s interlace theorem, see Wilkinson [21], we see that
except for the 2k outlying eigenvalues, all the eigenvalues of 4,(f)}— S,(f}
are in the neighborhood of zero with radius equal to {4 +logm)E, (f)+
2E{f). Our next task is to estimate the radius.

LEMMA 7. Let v>0. Then for m sufficiently large, we have

logm logk = r<m (20)
mv kv
Proof. Consider the function
log x
glx)=—5-, x22
X
Its derivative is given by
, 1—vlogx
g (X = v+ 1
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Thus g'(x)<0 if and only if x>e"". Hence when 2>¢!”, g(x) is a
decreasing function for all x 2. In particular, (20} holds for all #1.

If e"*>2, then g(x) is an increasing function for 2<x<e'” and a
decreasing function for x >e'”, ie.,

and

Since g(x) - 0 as x — oo, we see that for all m sufficiently large,

2
log m <10§v_.

v

m

Hence (20) follows. |

As an immediate corollary to the above lemma, we have the following
result.

LemMa 8. Let fe €5, with v>0. Then there exists a constant ¢ which
depends only on f and v such that

log(k + 1)

, 1<k<m,
(k+1)

(4+logm)E,(f)+2E(f)<c

for all m sufficiently large.
Proof. Since 2<3log(k+1) for all k> 1, we have, for large m,

(4+logm)E,(f)+2E.(f)<2log(m+1)E,(f)+ 3 log(k + 1) Ec(f),

for 1 <k <m. Thus for fin €,, by (10) and (20), we have for large m

(4+logm)E, (f)+2E(f)
¢ c
<21 1)——+31
og(m + 1) ¢y T3 loslk + D s
log(k+ 1)
< 5¢ "+ 1) I<k<sm |

Combining Lemmas 6 and 8, we have our main theorem of this section.
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THEOREM 3. Let fe %}, with v>0. Then for n large,

AN =SAN=Uf)=VAI+ W f), I<k<m, (21}

where U (f) and V (f) are positive semi-definite matrices of rank at mgosi
k and

clog(k+1)

W< G 1)

I<k<m. {223

Here ¢ is a constant that depends only on f and v.

As an immediate corollary, we can prove that the spectrum of
A (Y= 58,(f) is clustered around zero.

THEOREM 4. Let fe ¥ with v>0. Then for all ¢>0, there exisis a
K >0 such that for all n = 1, at most 2K eigenvalues of A,(f)— S.(f} have
absolute values exceeding ¢.

Proof. Let M >0 be chosen such that (21} and (22) hold for all m > 1.
For all £>0, let K> M be chosen such that

clog(K+1)<
(K+1y 7

where ¢ is given in (22). Then for 1 <m <K, since the {m+ 1)st row of
A (f)— S,(f)is zero (cf. (14)), 4,(f)— S, {f) has at most n — 1 =2m < 2K
nonzero eigenvalues. For m > K, we apply Cauchy’s interlace theorem to
(21) with & =K, then we see that at most 2K eigenvalues of 4,(f)— S,{/)
have absolute values exceedinge. |

4. THE SPECTRUM OF S, '(f}4,(f)

We begin by showing that the spectrum of S, '(f)4,{/) is clustered
around one.

THEOREM 5. Let fe$), withv>0. If f is positive, then for all £ >0, there
exists a K> 0, such that for all n sufficiently large, at most 2K eigenvalues
of STHS)VALSf)—1I, have absolute values larger than ¢.

Proof. Since fis positive, by Theorem 2, there exists an N > 0 such that
for all n> N, §,(f) is positive definite and S (/) is bounded uniformly in
the /, norm. Since

S, O A = L= ST UNAL =S )
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and by Theorem 4, A,(f)— S,(f) has clustered spectrum around zero, it
follows that S '(f)4,(f)— I, has clustered spectrum around zero for all
n>N. |

Using Theorem 5, one can conclude easily, see Chan and Strang [3] for
instance, that the conjugate gradient method converges superlinearly when
applied to the preconditioned system S, '(f)4,(f); ie., (1) holds for all
£>0 provided that » is sufficiently large. In the following, we derive an
estimate of the rate at which the norm |le || of the error vector at the gth
iteration converges to zero.

THEOREM 6. Let fe €, with v>0. If f is positive, then for large n,

7 clog’k
lle,l <k1j27 leoll,  1<g<m, (23)

Jfor some constant ¢ that depends on f and v only.

Proof. We remark that from the standard error anaiysis of the
conjugate gradient method, we have

llegl < [min max [P, (4)]] {leoll, (24)

where the minimum is taken over polynomials of degree ¢ with constant
term 1 and the maximum is taken over the spectrum of S, '(f)4,(f), or
equivalently, the spectrum of S Y2(f)A4,(f)S,**(f); see, for instance,
Golub and van Loan [13]. In the following, we will try to estimate that
minimum. For simplicity, we write A,(f) and S,(f) as 4, and S,,
respectively.

Let B,=S5;'%A4,—S,)S; "2 Then by (21), we have for large n

B'n — Sn_ 1/2 Uk S"_ 172 S"— 1,2 Vk Sn_ 172 + S"— 1/2 WkS"_ 1/2
=U,—V,.+ W,, l<k<m. (25)

Clearly U, and ¥, are still positive semi-definite matrices of rank at most
k. By (12) and (22)

¢log(k +1)

Il <US, 2 1W< +1)

I<k<m, (26)

with é =2¢/fmin-
Let us order the eigenvalues of B, as

Ho Spy € - SO0 - < <y
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By applying Cauchy’s interlace theorem to (25) and using the bound of
I WkHZ in (26), we see that for 1 <k < m, there are at most k eigenvalues
of B, lying to the right of ¢ log(k + 1)/(k +1)* and there are at most & of
them lying to the left of —¢élog(k + 1)/(k+ 1)". More precisely, we have

élog(k+ 1)

I<kgm.
k+1) fsm

ifui\ii <| A’k“zS
Using the identity
S’:l,"ZA"S’: 1;'2:1" + Bn?
we see that if we order the eigenvalues of S, '?4,S;'? as
Ao €A < <0< - AP <A,

then A7 =1+ ut for all k20 with

_élog(k+ 1)
(k+1)

¢ loglk + 1}

<A <SAF<S1+ kr 1)

I<kgsm (027

For 1%, the bounds are obtained from (4) and (11). In fact, we have

f“’isxk—s,{,x%‘ﬂ, Vk = 0. {28}
2fmax fmin

Having obtained the bounds for i}, we can now construct the polyno-
mial that will give us a bound for (24). Our idea is to choose P, that
annihilates the ¢ extreme pairs of eigenvalues. Thus consider

X X
={l——){1— igksm
po=(1-7)(1-5) ”

Between those roots 4, the maximum of | p,(x)] is attained at the average
x=3(4;7 + 4, ), where by (27) and (28), we have

(A =4 )
4A7 AL

2¢logk + 1) 2 fnax 2

( (k+1) ) (fm>

<Zéfmax)2 iogz(k+1)
fmin . (k_}_l)lv ’

max | p(x)| =
xeld .40 ]

A

I<ksm
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Similarly, for k=0, we have, by using (28),

max | (V)I (l+ (;)2 4fmax f‘mm)2
xeldy.Ag ] Po 4}L+ /1_ < 4fmm ‘

Hence the polynomial P,,=p,p,---p,_, which annihilates the g extreme
pairs of eigenvalues, satisfies

7 clog’k

max | |P,(0)l< [] S5

, I<g<m. 29
xe [l 1hg 1] hon K 1 29)
Here ¢ is some constant that depends only on f and v. Since the remaining
n—2q eigenvalues {Af},., are in the interval [, |, 415 ], (23) now
follows directly from (24) and (29). §

5. CONCLUDING REMARKS

We first remark that for Strang’s preconditioner, we can use the tech-
nique presented here to prove the superlinear convergence of the method
for a larger class of functions, namely the class of functions f that satisfy

lim logm-E, (f)=0, (30)
cf. (15). However, for this class of functions, we can only obtain the bound
(1) for |le,|l. This is to be compared with T. Chan’s preconditioner where
(1) holds even for fe®,,. We also remark that our results cannot be
generalized readily to the class of positive functions in %,,. This is because
for fe%.,, s,,(f) may not converge to f uniformly in R. Hence we cannot
conclude as in (11) that A,,(S,(f)) >3 mn- Finally we remark that
although the results we proved here are asymptotic results that hold when
n is large, in practice, the method converges superlinearly for n that are
small as well; see the numerical results in R. Chan [5] for instance.
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